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Abstract. We study the predictability of a theoretical model for earthquakes, using a pattern
recognition algorithm similar to the CN and M8 algorithms known in seismology. The model,
which is a stochastic spring-block model with both global correlation and local interaction,
becomes more predictable as the strength of the global correlation or the local interaction is
increased.

1. Introduction

Large earthquakes are disasters that cause losses of property and human lives. Unable to
prevent earthquakes, people hope to predict large earthquakes so that the losses can be
reduced to a minimum. In seismology, some empirical laws concerning the occurrence of
earthquakes have been discovered, among which the best known one may be the Guttenburg–
Richter relation [1], which expresses the earthquake frequency–energy relation as a power
law. The G–R relation can take several different forms. Recently some authors showed,
based on observational evidence, that the seismic moment is distributed according to the
gamma distribution [2, 3] with probability density

φ(M) ∝ M−1−β exp(−M/Mmax) (1.1)

whereM is the seismic moment andMmax is a ‘maximum moment’ for the distribution.
Equation (1.1) is considered as a modified Guttenburg–Richter law. As in any other field
of scientific research, the theoretical model also plays an important role in the study of
earthquakes. The results obtained from some theoretical models may help to get some
insights into the problem. The spring-block model is one of the theoretical models that
have been used for the study of earthquakes and also served as a paradigm of the concept
of self-organized criticality (SOC) [4].

In this paper we consider a spring-block model previously studied by Lu and Ding [5].
It was found in the Lu–Ding model that there is a scaling law

D(1) ∝ 1−ξ exp(−1/10) (1.2)

between the slip size1 and its probabilityD(1), whereξ is a universal exponent with a
value 1.5, and10 is a characteristic size of slip depending on the details of the system. The
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slip size distribution in the Lu–Ding model is actually in the same form as the modified
G–R relation (1.1). In this sense, the Lu–Ding spring-block model is a good model for
an earthquake. In this paper, we shall not discuss too much the distribution of slip size,
but only use this model to generate model earthquake catalogues. Applying a prediction
algorithm to the model, we study the predictability of large events in the model.

2. The model

Detailed description of the Lu–Ding model can be found in the original papers of Lu and
Ding [5, 6], herein we only give a brief description. The system consists of a total number
N of blocks frictionally contacting a fixed carpet. At the beginning,N randomly chosen
numbers,fi ’s, which are in the interval [0, ft ], are assigned to each block as the pre-forces
exerted on them, then the system is slowly driven so that the force exerted on each block
increases uniformly with time, until one block, say thej th one, experiences a forcefj ,
which reaches the maximum frictionft . Then the block will slip to a new position where
the static friction between it and the fixed carpet becomesf ∗

j . The slip of this block will
increase the forces on other blocks. The system arranges itself according to the following
dynamical rules:

fj → f ∗
j + α

(1 + 2β)N
u fj > ft

fj±1 → fj±1 + α + Nβ

(1 + 2β)N
u i = j ± 1

fi → fi + α

(1 + 2β)N
u otherwise

(2.1)

where u = fj − f ∗
j is the decrease of the force on thej th block after its slipping, the

parameterα ∈ [0, 1] corresponds to the global correlation, andβ ∈ [0, ∞) corresponds to
local (nearest neighbour) interactions. The value off ∗

j is chosen randomly from the interval
[0, ft ] through a given distribution functionp(f ) that is called the prestrain distribution.ft

is the maximum static friction between the carpet and the blocks, which is assumed to be
the same for all blocks. After the rearrangement of the system according to the dynamical
rules (2.1), there may be some other blocks, on which the resulting forces become larger
thanft . In this case the rules (2.1) must be used repeatedly until all the forces have values
below ft and thus no more blocks move. Before the system is further driven the total
number1 of blocks which moved in a chain reaction is called the size of the slip. Notice
that the total forceF = ∑

fi may decrease after the rules (2.1) are used. The dissipation
is proportional to

R = 1 − α

1 + 2β
. (2.2)

We define another quantity

C ≡ 1 − R = (α + 2β)/(1 + 2β) (2.3)

which will be referred to as the conservation level of the model. Here we emphasize that
the terminology ‘conservation’ and ‘dissipation’ refers to the redistribution of forces.

Since the system of blocks is driven globally, the force added to each block will increase
uniformly with time, thus the increase of force per block can be considered as a measure
of the time. Hereafter in this paper we will take the increase of force per block as the time
variable.
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A real earthquake catalogue contains the position of the earthquake epicentre, the time
and the magnitude of each earthquake which has occurred. Some modern catalogues even
contain information about the focal mechanism of each earthquake [7–9]. In our studies,
we use the Lu–Ding spring-block model to generate model catalogues, which record the
slip events which occurred during the simulations of the model. The slip event in the model
is considered as the analogue of an earthquake, and the size of the slip is analogous to the
energy release of the earthquake.

3. Prediction algorithm

The prediction algorithm used in this paper is similar to the pattern-recognizing algorithm
M8 and CN [10, 11]. Pepkeet al [12, 13] have applied a similar method to some self-
organizing systems such as Baket al’s sandpile model [14], Olamiet al’s spring-block
model [15], etc. They also found a good precursory function, termed the size of active zone
(SAZ) which, in their paper, is defined as the total number of blocks involved in the slip
events during a period of time. Motivated by the M8 and CN algorithm as well as by Pepke
et al’s work, we now apply a similar algorithm to the Lu–Ding model and investigate the
predictability of the large slip events in this spring-block system.

To compare the effectiveness of the predictions based on different precursors, some
normalization should be made to make the comparison meaningful. First, the length of
the catalogueL, which is the total number of slip events recorded, should be the same for
different predictions. Since we are studying a theoretical model, we can certainly letL be
an arbitrary large number. In our prediction we choseL = 200 000. Next, the minimum
size 1∗ of large events that are to be predicted is determined such that there areNl slip
events with size no less than1∗:

Nl =
L∑

i=1

θ(1i − 1∗) (3.1)

where1i is the size of theith slip event, andθ(x) is the step function such thatθ(x) = 1
for x > 0 andθ(x) = 0 for x < 0. In our calculations, we choseNl = 400.

The first precursory function we use in the prediction is calledactivity, which is defined
as the total number of considerable events occurred within the time windowW of the
predictions,

A =
∑
t∈W

θ(1t − 1) (3.2)

where1 is the minimum size of slip event that will be considered in the prediction; those
events with size smaller than1 will be ignored. In our prediction, we chose1 = 2.

If A is a good precursory function, it should show systematic deviation from its usual
values when a large event is about to occur. We find that in the Lu–Ding model, large
events are preceded by a depression of the value ofA, indicating that there is a relative
quiescence before large events occur. The quiescence preceding large events is also present
in the OFC model [12], but is not necessarily so for other models. This fact is similar to
the present status of real earthquake predictions: some regions see a quiescence [16–18]
preceding large earthquakes while other regions may experience frequent seismic activities
[19, 20] before large earthquakes.

We set a threshold value forA, say Ac. Then we move the time window along the
catalogue and monitor the value ofA all the time. WheneverA 6 Ac, we turn TIP (time
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of increased probability) on, warning that a large event may occur at any moment. Once
A returns toA > Ac, the TIP alarm will be turned off. After the catalogue is scanned by
the time window, there will be some time intervals that are issued as TIP. A large event
occurring during TIP is considered as being successfully predicted, while a large event
occurring without TIP alarm ismissedby the prediction. A period declared as TIP but
without large events occurring is a false alarm. If we letp1 be the percentage of large
events that have been successfully predicted:

p1 = number of large events successfully predicted

total number of large events to be predicted
(3.3)

andp2 be the fraction of the total time that has been declared as TIP:

p2 = time issued as TIP

total time
(3.4)

then for every given threshold valueAc we get a point(p1, p2) in a plot of p1 versusp2.
Varying Ac we get a curve for prediction, which is called thesuccess curve[21]. The
effectiveness of the prediction then can be evaluated by the quantityS = p1/p2. If S > 1,
it suggests that the prediction is meaningful since it is better than a random prediction.
Random prediction is based on no information about the system but only turns on and off
TIP randomly. For the random prediction, in a statistical sense, a fraction of alarm time will
catch the same fraction of large events, i.e.p1 = p2. So the success curve obtained from the
random prediction is a diagonal line in the(p1, p2) plot. We made a random prediction on
one of the model catalogues. The result shown in figure 1 confirms the above consideration.
So any prediction whose success curve lies above the diagonal line is better than the random
prediction and thus is meaningful. The success curve based on the precursor functionA

is shown in the lowest broken curve in figure 2. Since this curve is above the random
prediction (the diagonal line) we consider the prediction based on this precursory function
meaningful. But it is not very robust because this curve is only slightly better than the
random prediction.

The second precursory function we use can be called thetotal released energy(TRE)
of the events within the time window, which is the sum of the sizes of all the considerable
events,

E =
∑
i∈W

1iθ(1i − 1) (3.5)

where 1i is the size of an individual eventi, and θ(x) is the step function. For this
precursory function, we turn TIP on whenE 6 Ec, whereEc is a threshold value that
will be varied to get the success curve. We find that this precursor works much better than
the activityA, probably because it incorporates more information into the prediction than
the activity A does. Figure 2 also shows the results based on this precursor. WithE as
precursor, when 30% of the time is declared as TIP, about 80% of large events can be
predicted.

In order to improve the prediction effectiveness further, we consider in the Lu–Ding
spring-block model the total forceF on the system, which reads

F =
N∑

i=1

fi. (3.6)

Notice that the precursory functionF is only a function of time, unlike the activityA and
the total released energyE, which are functions of a time windowW . For this precursory
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Figure 1. The success curve for a random prediction. In principle, this should be a diagonal
line in thep1 versusp2 plot. In all the following figures, the diagonal line is also plotted for
comparison.

Figure 2. The success curves for the predictions withA, E, F , andδF as precursors. The total
forceF has the best performance. In this figure, the number of blocksN = 250, the parameters
α = 0.7, β = 2. The conservationC = 0.94. The time interval of the time window is 0.1
net force added per block, the length of the model catalogueL = 200 000, the number of large
events to be predictedNl = 400, the minimum size of event to be considered1 = 2.
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Figure 3. When the value ofβ is fixed, a largerα gives a more predictable Lu–Ding model.
(a) The success curves based on the precursory functionF for the casesβ = 0.5. (b) Using
the total released energyE as precursor.β = 9.5.

function, the TIP is turned on whenF > Fc, whereFc is a given threshold in the prediction.
UsingF as the precursory function, we can successfully predict nearly 90% of large events
with only 15% of time issued as TIP alarm (for the case shown in figure 2).

Although the total forceF is a relatively good precursory function for this theoretical
model, it suffers from the drawback that the measurement of this quantity in practice is
difficult and indirect. One difficulty is the determination of the zero point of the stress
or strain in rocks. It is the increment of stresses or strains that can be measured with
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certain electronic or mechanical techniques. To make our discussion more practical, we
now consider another precursory function, the increment of the force within a time window,
which is defined as

δF = F(t + δt) − F(t) (3.7)

whereδt is the width of the time windowW . In the prediction, we turn TIP on whenδF
becomes larger than a given thresholdδF c. The results of prediction based onδF are also
shown in figure 2. With this precursory function, when about 25% of the time is issued as
TIP, more than 80% of large events can be successfully predicted. The performance ofδF ,
as expected, is not as good as that ofF , but is slightly better than that of the precursory
function E.

4. The effects of the global and local interactions on the predictability of the model

First, we study the effects of the global correlation on the predictability of the model. In
doing so, we fix the value ofβ and varyα. Typical results are shown in figure 3, from which
we see that for givenβ the model becomes more predictable asα is increased. Figure 3(a)
shows the results for the casesβ = 0.5; the three success curves are forα = 0.6, 0.7 and
0.8, respectively. Whenα = 0.6, about 20% of the time needs to be declared as TIP in
order to catch 80% of large slip events; whenα = 0.7, the fraction of time that needs to
be TIP is reduced to 13% to catch the same amount of large events. Asα is increased to
0.9, the prediction becomes better. We see that only 5% of the time needs to be TIP alarm
in order to catch 80% of large events. The result that largerα gives a better prediction
performance is also true for other values ofβ and for other precursors. For examples, we
show in figure 3(b) the results for the caseβ = 9.5 with E as the precursory function.

Figure 4. The effect of local interaction on the predictability of the Lu–Ding model. A greater
β gives a higher predictability. The four success curves are based on the precursory function
F .
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Figure 5. For differentα andβ but fixedC, the predictability of the Lu–Ding model is mainly
determined by the strength of global correlation.

Next, we investigate the effect of the local interaction on the predictability of the model.
We found that whenα is fixed, a largerβ gives a better prediction performance. In figure 4,
we show the results for the caseα = 0.8, β = 0, 0.1, 0.5 and 9.5. The success curve for
β = 9.5 is the best one among the four curves shown in this figure. We note that ifβ

becomes larger than 9.5, the predictions will not improve too much, which means that for a
givenα there is a saturation value ofβ beyond which the prediction effectiveness no longer
increases.

One may ask whether the conservation levelC uniquely determines the effectiveness
of the prediction. The answer is ‘no’. Actually, we show in figure 5 that the prediction
effectiveness with differentα and β is quite different, although the conservation level is
fixed atC = 0.85. Besides, calculations show that the effectiveness of the success curves
is mainly determined by the parameterα.

5. Stochastic versus deterministic

When α = 0 the Lu–Ding model reduces to a complete locally interacted model. In this
case, a largerβ still gives a more predictable model than a smallerβ (see figure 6(a)).

Here we recall the prediction results for the OFC spring-block model [15]. The OFC
model also has an adjustable parameter serving as the conservation level. The effect of
the conservation level on the predictability of the OFC model was reported by Pepke and
Carlson [12]. Their typical results suggested that, in the OFC spring-block model, as the
conservation level is increased the large events become less predictable (with SAZ as the
precursor). We present in figure 6(b) the prediction curves for the OFC model using the
total forceF as the precursory function. Figure 6(b) clearly shows that the increase of the
conservation level will reduce the predictability of the OFC model. This result for the OFC
model is in sharp contrast to that of the Lu–Ding model (see figure 6(a)). How does this
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Figure 6. Comparisons between the OFC model and the 2D Lu–Ding model. In this figure
for both the OFC model and the 2D Lu–Ding model, the numbers of blocks in the system are
N = 20× 20 = 400. (a) For the 2D Lu–Ding model, withE as precursory function. Larger
β makes the Lu–Ding model more predictable. (b) For the OFC model, withF as precursory
function. Largerβ (higher conservation level) makes the OFC model less predictable.

happen? Let us look back into the major differences between the two models.
For comparison purposes we now generalize the Lu–Ding model to its two-dimensional
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case. It is straightforward to get the dynamical rules of the 2D Lu–Ding model,

fi,j → f ∗
i,j + α

(1 + 2β)N
u fi,j > ft

fi±1,j → fi±1,j + α

(1 + 2β)N
u + β

2(1 + 2β)N
u

fi,j±1 → fi,j±1 + α

(1 + 2β)N
u + β

2(1 + 2β)N
u

fm,n → fm,n + α

(1 + 2β)N
u m 6= i ± 1 n 6= j ± 1

(5.1)

whereu = fi,j − f ∗
i,j .

On the other hand, the dynamical rules for the OFC model are

fi,j → 0 fi,j > ft

fi±1,j → fi±1,j + β

2(1 + 2β)N
u

fi,j±1 → fi,j±1 + β

2(1 + 2β)N
u

fm,n → fm,n m 6= i ± 1 n 6= j ± 1

(5.2)

whereu = fi,j .
If we takeα = 0 in the 2D Lu–Ding model, the only difference between the two models

is the value off ∗
i,j . In the Lu–Ding model,f ∗

i,j is chosen randomly in the interval [0, ft ].
In this sense the Lu–Ding model is a stochastic model. In the OFC model,f ∗

i,j is uniquely
chosen to bef ∗

i,j = 0, so the OFC model is a deterministic model. The only randomness
involved in the OFC model is the randomly assigned pre-force on each block. It is the
presence of the randomness that makes the behaviour of the Lu–Ding model different from
that of the OFC model. We also find that because of the absence of randomness in the OFC
model the one-dimensional OFC model has only a trivial periodic behaviour, and does not
exhibit SOC. On the other hand, the Lu–Ding model shows a complicated behaviour even
in its one-dimensional version.

6. Summary and discussions

In this paper we have applied a pattern-recognizing algorithm to predict the large events in
the Lu–Ding model. Four kinds of precursors are used, among which the most effective
is the total forceF . The global interaction and local interaction both affect the results of
prediction. For the Lu–Ding model, it becomes more predictable asα andβ are increased.
Especially, we find in the case when the global interaction is turned off that the Lu–Ding
model becomes more predictable as the conservation level is increased, which is in sharp
contrast to the results for the OFC model.

We notice that some authors have suggested that the events in a self-organizing critical
system might be unpredictable [22]. Our predictions on the OFC model and the Lu–
Ding model point to the opposite direction of that argumentation. All of the predictions
performed are better than the random prediction. The relatively better performance by
F and δF suggests that to make more effective predictions, more information about the
system should be obtained. Recently, de Sousa Viera and Lichtenberg showed that some
SOC models might be chaotic, in the sense that the largest Liapunov exponent (LLE) of
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these systems is greater than zero [23], which certainly should affect the predictability. The
spring-block system studied by de Sousa Viera and Lichtenberg was a deterministic model.
For earthquake modelling, we prefer stochastic spring-block models such as the Lu–Ding
model. In fact, the earthquake occurrence is characterized by extreme randomness, and
the stochastic nature of seismicity is not reducible by more numerous or more accurate
measurements [3].
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